胡爱梅个人简介
【低孔低渗型储集层精细测井解释方法研究——以南海东部某油田为例】
钱星
(广州海洋地质调查局广州510760)
作者简介:钱星(1985—),男,助理工程师,主要从事海洋石油地质方面的科研及生产工作。E-mail:made607@126.com。
摘要南海东部某油田沙河街组储集层岩石结构复杂,层间差异明显,总体上为低孔低渗型储集层,使用传统的油气测井评价方法解释精度往往较低,常常造成油气层的漏解释或者误解释。依据岩心物性、毛管压力曲线等实验分析数据,以测井相分析为手段和桥梁对储集层进行分类分析,提出了以沉积微相砂体分类为单元的精细测井评价方法。应用此方法对该油田实际井进行测井解释结果表明,以该方法建立的测井解释模型具有较高的精度,为进一步提高储量计算和储集层表征的准确性奠定了基础。
关键词低孔低渗储集层沉积微相孔隙结构精细测井解
1引言
储集层参数模型的精度直接影响着储量计算和储集层表征的准确性。低孔低渗油气藏与中高孔渗油气藏的储层特性有许多不同,一般具有孔隙结构复杂、喉道细小、束缚水饱和度高[1~3]等特点。
常见的针对低孔低渗储层参数模型的研究思路主要以细分储集层类型来研究岩电参数规律,从而达到提高储集层参数模型精度的目的[4~9]。大量的研究表明,在测井精细解释的过程中,有效的对储集层进行分类分析是提高解释精度的有效手段。周灿灿等[10]依据岩石物理理论,提出岩石相控建模的概念对近源砂岩进行有效分类;张龙海等[11]以地层流动带指数和储集层品质指数来研究岩石物理分类的有效方法;这些分类方法对储层参数模型建模都具有一定的实际指导意义。
南海东部某油田沙河街组储层孔隙度平均值一般小于20%,渗透率平均值小于50×10-3μm2,为典型的低孔低渗储层[12],其储层质量主要受原始沉积环境和成岩作用所控制[13~17]。
纵观低孔低渗储层成因的各因素,结合研究区低孔低渗储层成因特点,本文试以沉积微相分类为思路来细分储集层,使得测井解释岩电参数模型更加准确,从而达到对该地区低孔低渗储集层进行精细测井解释之目的。
2低孔低渗储层与沉积相带之间的关系
南海东部某油田沙河街组沙二段为扇三角洲沉积,主要为扇三角洲前缘亚相,进一步可分为水下分流河道、水下分流河道间、河口坝和远砂坝微相;沙三段为较深水湖泊环境下的浊积扇沉积,发育有扇根、扇中、扇前缘亚相,其沙河街组沉积分析综合柱状图如图1所示[18~19]。
依据常规物性分析数据,对各微相砂体的孔隙度和渗透率统计分析表明(图2):沙三段各微相砂体总体上表现为低孔低渗的物性特征,其中,扇根砂体孔隙度分布范围7.9%~16.9%,平均13.3%,渗透率分布范围0.01~39.9mD,平均1.19mD;扇主体砂体孔隙度分布范围3.8%~17.0%,平均13.0%,渗透率分布范围0.05~49.7mD,平均4.0mD;扇前缘砂体孔隙度分布范围1.7%~14.2%,平均4.6%,渗透率分布范围0.01~42.1mD,平均1.07mD。沙二段水下分流河道砂体孔隙度分布范围4.5%~24%,平均13.17%,渗透率分布范围0.005~466.5mD,平均42.89mD,表现为中低孔渗;河口坝砂体孔隙度分布范围5.2%~12.6%,平均8.93%,渗透率分布范围0.006~0.43mD,平均0.09mD,与沙三段各微相砂体一样,表现为低孔渗的物性特征。
由此可见,沉积作用的差异使得各微相砂体储层物性不同,研究区低孔低渗储层主要发育于扇三角洲沉积的河口坝及近岸水下扇沉积的扇根、扇主体、扇前缘砂体之中。
3各沉积微相砂体的孔隙结构特征
在对该油田各井测井相分析的基础上,依据毛管压力实验分析数据,对具有不同物性特征的各微相砂体其孔隙结构进行分析,根据毛管压力曲线的主要特征,其孔隙结构可分为Ⅰ、Ⅱ、Ⅲ、Ⅳ四种类型(图3),其中水下分流河道砂体主要以I、Ⅱ类为主,Ⅰ类曲线排驱压力较低,小于0.2MPa,最大进汞饱和度大于80%,喉道半径分布大于1.0μm,喉道相对较大,分选较好,为细喉;Ⅱ类曲线排驱压力介于0.2~0.5MPa之间,最大进汞饱和度大于60%,喉道半径为0.25~1.0μm,喉道细小,分选较差,为特细喉。
而具有低孔渗物性的河口坝、扇根、扇中及扇前缘砂体则主要以Ⅲ、Ⅳ类为主,Ⅲ类曲线排驱压力介于0.5~1.0MPa之间,最大进汞饱和度小于60%,喉道半径峰值一般都小于0.1~0.25μm,孔喉特别微细,但是分选中等,细歪度的喉道,流通性能较好,属于微细喉;Ⅳ类曲线毛管压力曲线近直立,排驱压力大于1.0MPa,最大进汞饱和度一般小于50%,在仪器压力范围内读不出中值毛管压力,表示岩石渗流能力极差,喉道半径峰值小于0.1μm,属于特微喉。
由上分析不难看出,在一定的沉积环境背景下,各微相砂体与储层的孔隙结构类型有较好的对应关系,在研究层段主要表现同一微相砂体其孔隙结构具有相似性,不同微相砂体之间孔隙结构特征差异明显的规律。
图1沙河街组沉积相分析综合柱状图(据杨玉卿[20]修改)
4在南海东部某油田中的应用
众所周知,在储集层评价中,孔隙结构分析是储集层微观物理研究的核心,不论是砂岩还是碳酸岩,其孔隙、喉道类型以及它们的配合情况,与储集层的物理特性和储集性能有密切关系。对于低孔渗储层中孔隙结构的评价则显得更加重要,其孔隙、喉道的大小、分布以及几何形状不但是影响储层储集能力和渗透特征的主要因素,而且也是影响测井解释评价精度的关键。
图2各微相砂体储层孔隙度-渗透率关系图
图3毛管压力曲线类型
在测井解释过程中,常受实际条件的限制,取心段往往较少且分布不均,储层的物性、孔隙结构、岩电参数等实验分析数据有限,分析所得的测井解释参数往往不能较完整的对全区域、全井段储层有所反映。在已知沉积背景的情况下,测井相的划分和分类分析则为解决这一实际难题带来了可能,测井曲线是地层岩性的地球物理响应,相同的微相砂体其地球物理特征具有一定的相似性,以测井相为手段和桥梁,通过研究有分析数据的各微相砂体的孔隙结构特征,进而对相似的砂体间接进行孔隙结构分析,最终研究不同孔隙类型储层的岩电参数变化规律,从而根据地质成因和孔隙结构类型来视储层不同而分开选择参数模型,进而达到对全井段的精细测井解释之目的。
阿尔奇公式是利用电阻率曲线计算含油饱和度的经典方法,公式中解释参数a、b、n、m的选取对解释结果往往有较大的影响。其中a、b(岩性系数)为与岩性有关的参数,取值一般接近于1;n(饱和度指数)定义了含水饱和度间与储层电性特征间的数量关系;m(胶结指数)表现为地下地质体的一种综合响应,是反映储集层孔隙结构的参数,对孔隙结构具有非均质性的储集层常常变化较大。
针对研究区不同微相砂体储集层孔隙结构具有差异性这一特点,在本次解释中,对不同孔隙结构类型的储层分类分析了其孔隙度与各岩电参数a、b、m、n的变化规律(图4)。分析结果表明,储层的孔隙结构类型和特征对m值的变化起了主导作用,低孔渗储层段胶结指数与孔隙度表现出较好的相关性,非低孔低渗储层段胶结指数m与孔隙度等参数之间则没有明显规律,最终其参数选择见表1。
表1不同类型储层的a、b、m、n参数值
最终,利用上述方法,对研究区X井沙河街组沙三段的低孔低渗储层段进行了实测井解释,发现了一系列的可能存在的低孔低渗型油气藏,测井解释成图如图5所示。
5结论
依据实验分析数据,以测井相为手段和桥梁,对南海东部某油田沙河街组储集层分类分析,针对不同孔隙结构类型的储集层选择不同的岩电参数分类进行测井建模解释,可较好地改善和提高低孔低渗储层测井解释的准确性。
图4不同类型储层孔隙度与m值变化关系
图5测井解释成果
参考文献
[1]唐海发,彭仕宓,赵彦超.大牛地气田盒2+3段致密砂岩储层微观孔隙结构特征及其分类评价[J].矿物岩石,2006,(3).
[2]马明福,方世虎,张煜,史文东.东营凹陷广利油田纯化镇组低渗透储层微观孔隙结构特征[J].石油大学学报(自然科学版),2001,(4).
[3]杨勇,达世攀,徐晓蓉.苏里格气田盒8段储层孔隙结构研究[J].天然气工业,2005,(4).
[4]孙小平,等.复杂孔隙结构储层含气饱和度评价方法[J].天然气工业,2000,20(3):41~44.
[5]张明禄,石玉江.复杂孔隙结构砂岩储层岩电参数研究[J].石油物探,2005,(1).
[6]张龙海,周灿灿,刘国强,等.孔隙结构对低孔低渗储集层电性及测井解释评价的影响[J].石油勘探与开发,2006.(6).
[7]张喜,胡纪兰,张利,等.吐哈盆地特低孔低渗油气层测井解释方法研究[J].石油天然气学报,2007,(3).
[8]张龙海,周灿灿,等.不同类型低孔低渗储集层的成因、物性差异及测井评价对策[J].石油勘探与开发,2007,(6).
[9]颜泽江,唐伏平,等.洪积扇砂砾岩储集层测井精细解释研究——以克拉玛依油田为例[J].新疆石油地质,2008,(10).
[10]张龙海,刘忠华,等.低孔低渗储集层岩石物理分类方法的讨论[J].石油勘探与开发,2008,29(5):557~560.
[11]张龙海,刘忠华,周灿灿,等.近源砂岩原生孔隙储集层岩石相控建模及其应用[J].石油勘探与开发,2008,(6).
[12]赵澄林,胡爱梅,等油气储层评价方法(SY/T6285-1997)[S].北京:石油工业出版社,1998.
[13]李丽霞.渤中地区第三系碎屑岩储层成岩作用研究[J].中国海上油气(地质),2001,15(2):111~119.
[14]刘正华,杨香华,陈红汉,等.黄骅坳陷歧南凹陷古近系沙河街组储集层物性影响因素分析[J].古地理学报,2009,11(4):435~445.
[15]谢武仁,邓宏文,王红亮,等.渤中凹陷古近系储层特征及其控制因素[J].沉积与特提斯地质,2008,28(3):101~107.
[16]宋鹍,金振奎,王晓卫,等.沉积相对储集层质量的控制——以黄骅坳陷王官屯油田枣、油层组为例[J].石油勘探与开发,2006,33(3):335~339.
[17]黄龙,田景春,等.鄂尔多斯盆地富县地区长6砂岩储层特征及评价[J].岩性油气藏,2008,20(1):83~88.
[18]邓运华,李建.渤中25-1油田勘探评价过程中地质认识的突破[J].石油勘探与开发,2007,34(6):646~652.
[19]杨香华,陈红汉,叶加仁,等.渤中凹陷大型湖泊三角洲的发育特征及油气勘探前景[J].中国海上油气(地质),2000,14(4):26~232.
[20]杨玉卿,潘福熙,等.渤中25-1油田沙河街组低孔低渗储层特征及分类评价[J].现代地质,2010,24(4):687~693
Finelogginginterpretationofthelowporosity&lowpermeabilityreservoir——ByacasestudyofanoilfieldintheeastofSouthSeaofChina
QianXing
(GuangzhouMarineGeologicalSurvey,Guangzhou,510760)
Abstract:Itone-sidedorwronglyexplainsaboutoilandgaslayerbyusingtraditionaloilandgaswellloggingevaluationbecauseoflowporosityandlowpermeabilityreservoirastheShahejieFor-mationreservoirtextureiscomplexanddifferentobviouslybetweenthelayerinanoilfieldintheeastofSouthSeaofChina.AmoreaccurateLogEvaluationmethodofclassifyingsedimentarymi-cro-facesisproposedbyanalyzingwellloggingfacesandreservoirbedaccordingtosomeexperi-ments’datasuchascorepropertiesexperimentorcapillarypressurecurvesexperiment.Itshowsthatthelogginginterpretationmodelismoreaccuratebyapplyingthismethodtologexplanationofoilfieldrealwell,thereforeitestablishesatheoryfoundationofmoreaccuratereservecalculationandreservoircharaeterization.
Keywords:Lowporosity&lowpermeabilityreservoirSedimentarymicrofaciesPorestructureFinelogginginterpretation
【韩城地区煤层气井合理动液面高度控制方法探讨】
翟雨阳1胡爱梅1王芝银2段品佳2张冬玲3
(1.中联煤层气国家工程研究中心有限责任公司北京1000952.中国石油大学城市油气输配技术北京市重点实验室北京1022493.中石油煤层气有限责任公司北京100028)
摘要:韩城地区煤层属低渗透率煤层气藏,且地质条件复杂,煤岩结构及力学性能差。在煤层气开采初期,井筒内的液柱重力在井底流压中占很大的比例,而井底流压与井周煤岩的应力状态变化规律密切相关。排采降压过程中,过小的动液面高度使煤层处于进一步压密状态,并导致渗透率降低,而过大的动液面高度使井底压力过大进而引起井周岩石产生较大软化破碎区,形成煤粉堵塞渗流通道。因此,研究煤层气动液面高度的合理区间及降低速率对开采过程中有效保持井周应力的合理分布,维持或提高储层渗透率,具有十分重要的意义。本文以韩城示范区为例,利用韩城3#,5#煤层的岩石力学试验,分析了煤岩应力状态与渗透率的关系,通过井周弹塑性应力分析,建立了不同应力状态下保持或提高绝对渗透性的合理动液面高度区间和降低速率。利用所建立的模型对韩城地区WL1,WL2井组进行计算分析,获得了韩城煤层气井开采过程中动液面高度的合理变化区间和排采速率的合理值。本论文研究成果为韩城煤层气井排采强度定量化控制提供了重要的指导意义和借鉴方法。
关键词:煤岩应力动液面渗透率排采速率
基金项目:“十一五”国家科技重大专项项目38———煤层气排采工艺及数值模拟技术(2009ZX05038)资助。
作者简介:翟雨阳,男,1973年生,博士,主要从事常规油气、煤层气排采及数值模拟研究工作,通讯地址:北京市海淀区地锦路5号中关村环保科技示范园7号楼,Email:zhaiyy@nccbm.com.cn
DiscussiononControlMethodtoReasonableHeightofDynamicLiquidLevelforCBMWell
ZHAIYuyang1,HUAimei1,WANGZhiyin2,DUANPinjia2,ZHANGDongling3
(1.ChinaUnitedCoalbedMethaneNationalEngineeringResearchCenterCo.Ltd.;2.BeijingKeyLaboratoryofUrbanOilandGasDistributionTechnology,ChinaUniversityofPetroleum,Beijing102249,China;3.PetroChinaCBMCompanyLimited,Beijing,100028,China)
Abstract:InChina,Coalisoflowpermeability,complexgeologicalconditions,andweakpetrographicalstructureandmechanicalperformance.Intheinitialstageoftherecovery,thegravityoftheliquidcolumntakesalargeproportioninbottom-holepressure(BHP),andthestressstateofsurroundingrockarecloselyrelatedwithBHP.Thus,intheprocessofrecovery,toosmallheightofthedynamicliquidlevelmakescoalseambefurthercompactedandleadstopermeabilityreducing;reversely,toomuchheightofdynamicliquidleveleasilycausesBHPtoolargeandinducesthesurroundingrockbreakinginsoften,andproducesthecoalpowderandblockstheseepagechannels.Therefore,thestudyontherationalrangeofdynamicliquidlevelandthereducingratehavethevitalsignificancetoeffectivelymaintainthereasonabledistributionofstressstateofsurroundingrockandincreasereservoirpermeability.Basedonthe3#,5#coalrockmechanicalexperimentsinHan-cheng,thispaperanalysestherelationshipofthestressstateandpermeabilityofcoalrock.Throughtheelastic-plasticstressanalysistothesurroundingrockofwell,themathematicalmodelisestablished,whichisaboutthereasonablerangeanddepres-surizationrateofdynamicliquidleveltomaintainandimprovetheabsolutelypermeability.TheestablishedmodelsareappliedtocalculateandanalyzethefielddataofWL1andWL2WellsinHan-Cheng.Finally,thereasonablevariationsofdynamicliquidlevelareobtained.Theresearchingresultsprovideimportantinstructionsandrefer-encestothereasonablerecoverycontrolofthecoalbedmethaneinHan-cheng.
Keywords:coalrock;stress;dynamicliquidlevel;permeability;depressurizationrate
引言
煤层气作为非常规能源,对其有效的开采不但可以缓解我国能源短缺的问题,还可以提高煤炭资源的开采效益,并且能够减少对环境(温室效应)的影响。煤层气的有效开采受多种因素的影响,如地质构造特征、煤岩结构、煤阶、渗透率、含气量、解吸吸附特征和开采工艺等[1~5]。因此,煤层气的开采与常规油气开采相比既有相似之处,同时又存在着较大的差异。其中,应力敏感性问题在煤层气工程中表现的尤为显著[6~7]。煤岩储层的渗流能力受孔隙压力变化、煤层气解吸引起的基质收缩作用和滑脱效应的综合影响[8~10]。加载速率和加载方式的不同对煤岩的力学特性和破坏特征有较大的影响,如果加载速率较快,煤岩将呈脆性粉碎性破坏,抗压强度略有提高;相反若加载速率较低,则煤岩抗压强度偏低,延性增大。在煤层气工程实际中,煤岩结构复杂,裂隙(面割理和端割理)十分发育,随着排采的进行煤岩的应力状态将不断发生变化,导致煤岩的裂隙开始发生闭合,然后产生开裂,最终会发生破碎的过程,进而引起储层的渗流系统发生改变,而排采过程中渗透率的变化规律决定着煤层气是否能够高效的开采[11~12]。目前国内外煤层气行业在制定排采工作制度方面主要依靠经验及井筒液面变化来定性确定,这往往导致排采制度不合理,对储层造成伤害,影响开发效益。本文探讨如何通过排采过程中控制煤层气井的合理动液面高度变化规律提高煤层气效益,为煤层气排采强度定量控制提供了科学的理论依据。
1韩城地区煤岩物理力学特性
1.1试验测试
煤岩力学特性是反映和研究储层力学行为和应力敏感性的基础数据。利用RW2000岩石三轴压缩试验机对高径比为2∶1的煤岩心试件进行实验,测定了韩城3#,5#和11#煤岩的抗压强度和抗拉强度等参数。其中,抗压强度、弹性模量、泊松比由单轴压缩试验测得;抗拉强度由劈裂试验测得;内摩擦角、粘聚力、残余粘聚力和残余内摩擦角通过三轴压缩强度试验获得,试验结果见表1和表2。
表1韩城煤岩单轴抗压抗拉强度及变形参数
表2韩城煤岩三轴抗压强度试验结果
由表1和表2中的实验测试资料可见,韩城煤岩力学特性较差,抗压强度均在10MPa以下。三类煤岩比较而言,3#和5#煤的物理力学特性要比11#煤强,11#煤的残余强度非常低。因此,在煤层气工程中必须注意煤岩力学特性对排采强度控制的影响。
1.2煤岩应力状态影响渗透率变化机理
基于对韩城主力产气煤层煤岩(3#,5#和11#煤)进行的室内试验和应力应变全曲线下煤岩应力状态对渗流能力影响关系研究表明,煤岩的绝对渗透率在初始弹性变形阶段是随有效应力的增加而减小,但减小的幅度并不大;当有效应力接近煤岩的峰值强度时,由于原有裂隙的开裂和新裂隙的出现导致渗透率缓慢增加当超过峰值强度后,渗透率迅速增大;但当有效应力接近煤岩的残余强度时,渗透率逐渐趋于稳定。
其中,煤岩弹性极限点为原生裂隙开裂、新裂纹开始萌生的临界点。
2合理动液面高度的确定
在煤层气开采过程中,随着动液面的降低,储层煤岩应力状态不断发生变化,导致煤岩的结构特征和孔隙率等物理力学特性发生改变,因而影响了储层的渗流能力。在此过程中,储层渗透率的变化规律与煤岩的力学特性和煤岩的应力状态变化规律密切相关。根据煤岩应力状态对绝对渗透率的影响关系,考虑煤层气井井周具有破碎区的弹塑性应力状态,则可以通过对井周围岩进行应力状态变化规律分析,另由煤层气生产不同阶段井周应力分布与井底流压及套压和液柱高度之间的关系,忽略气柱摩擦阻力,推导得出保持储层处于塑性裂隙发育阶段的液柱高度合理区间为
中国煤层气技术进展:2011年煤层气学术研讨会论文集
则,动液面高度为h'w=H-hw
另由工程实际分析可知,井底流压的上限值不超过储层原始压力pe。式中:H为储层埋深;pe,pc,p0分别表示为储层压力,套管压力和原岩平均水平应力;c,φ,cr,φr,St分别表示煤岩的粘聚力,内摩擦角,残余粘聚力,残余摩擦角和抗拉强度;ρg表示液柱重度。
因此,要想提高渗透率,应控制合理的动液面高度变化范围,以保持井周应力状态为弹塑性状态,以在井周形成割理或裂隙贯通的流体运移通道,且随着开采过程中塑性区的发展,在井周出现塑性软化区或破碎区,但需防止井周出现过大塑性软化区。
合理的动液面高度变化范围与煤岩的力学性质、储层埋深密切相关,尤其是受内摩擦角影响较大。由于储层的软化区受煤粉的影响会使渗透率受到抑制,因此,在煤层气开采过程中需根据储层的力学特性及埋深来合理控制动液面高度,尽量避免软化区大范围产生,以免造成储层伤害而影响煤层气的进一步开采。
3动液面合理降低速率
由煤岩的加载速率效应可知,加载速率对煤岩的强度呈正相关影响,同时煤岩脆性亦增强。对于各向异性的煤岩介质,过快的加载速率不利于煤岩中的原始裂隙裂缝的稳定扩展和煤层气的渗透的提高。同理,对于煤层气工程排采过程中的动液面降低速率对井周储层煤岩具有类似的影响机理,如果动液面降低速率过快,将会使储层煤岩有效应力快速增大,最终不合理的动液面降低速率导致煤岩出现脆性破碎并有大量煤粉产生,对储层造成巨大的伤害。所以,煤层气开采不同阶段需控制动液面降低速率在合理值域内。
当储层煤岩处于初始弹性应力状态下时,
中国煤层气技术进展:2011年煤层气学术研讨会论文集
当储层煤岩处于裂隙扩展的塑性阶段,即动液面高度满足(1)式时,
中国煤层气技术进展:2011年煤层气学术研讨会论文集
式中:h'w表示动液面降低速率;ωcr、ωce为塑性软化阶段和弹性阶段的动液面降压速率上限值,可通过试验和现场数据综合分析确定。
4韩城地区工程应用
韩城地区煤层气为多煤层储层联合排采,煤岩力学特性较差,合理的动液面变化规律对煤层气的高效排采具有很大的意义。根据韩城煤岩的试验力学参数和合理动液面高度变化规律的确定方法(见式1~3),对韩城地区WL1和WL2的3#和5#煤联合开采的典型煤层气井排采数据进行了统计计算分析,结果见表3。
表3合理动液面高度降低速率上限值
通过拟合分析可得:
在开采初期的弹性阶段,3#、5#煤联合开采井的动液面近似合理降低速率上限值h'w(m/d)随储层埋深h(m)的变化规律分别为:h'w≤0.022h~5.188;当井周煤岩处于塑性阶段,3#,5#煤联合开采井的动液面合理降低速率上限值h'w(m/d)随储层埋深h(m)的变化规律为:h'w≤0.006h~1.234。
开采过程中无论是初始弹性阶段或塑性破坏阶段,动液面降低速率上限值与储层埋深均近似呈线性递增的规律。煤岩力学特性对开采过程中降液速率影响较大,因此对于力学特性较差的储层,需控制好降液速率才能维持较高的排采能力。初始弹性阶段的降液速率比中期塑性阶段的降液速率一般高4~5倍,这也恰好与室内强度实验曲线峰值前后稳定加载的速率值相同。考虑到工程实际中的安全因素,建议取1.2的安全系数。
5结论
(1)本文基于煤岩试验揭示了煤层气开采过程中井周煤岩应力状态对渗透率影响的力学机理;储层有效应力随着压降漏斗不断扩展而不断增大,煤岩从原岩区到井壁处,由原始的弹性状态进入塑性状态,在井壁处出现张拉破坏区,此时裂隙开裂积累,日产能达到最大。
(2)以韩城地区煤层气工程数据为依托,探讨提出了生产过程中为提高储层的渗流能力,合理动液面高度变化规律的控制范围及降低速率上限值,对煤层气井的合理排采具有借鉴意义。
(3)煤层气开采受多种因素的综合影响,还需考虑表皮效应(储层伤害)和压裂效果的影响,有待进一步考虑研究。
参考文献
[1]张新民,张遂安.1991.中国的煤层甲烷[M].西安:陕西科学技术出版社
[2]SCHAFERPS.HV.1992.Aguidetocoalbedmethaneoperations[M].Chicago:USGasResearchInstituteSAULSBERRYJL,SCHAFERPS,SCHRAUFNAGELRA.1996.Aguidetocoalbedmethanereservoirengineering[M].Chicago:USGasResearchInstitute
[3]傅雪海等.2003.多相介质煤层气储层渗透率预测理论与方法[M].北京:中国矿业大学出版社
[4]郝琦.1987.煤的显微孔隙形态特征及其成因探讨[J].煤炭学报.(4):51~54
[5]唐巨鹏,潘一山,李成全等.2006.有效应力对煤层气解吸渗流影响试验研究[J].岩石力学与工程学报,25(8):1563~1568
[6]秦跃平,王丽,李贝贝,崔丽洁.2010.压缩实验煤岩孔隙率变化规律研究[J].矿业工程研究.25(1):1~3
[7]JüntgenH.1987.Researchforfutureinsituconversionofcoal[J].Fue,l,66:272
[8]GanH,NandiSP,WalkerPL.1972.NatureofporosityinA-mericancoals[J].Fue,l(51):272~277
[10]苏现波,陈江峰,孙俊民等.2001.煤层气地质学与探勘开发[M].北京:科学出版社
[11]李相臣,康毅力,罗平亚.2009.应力对煤岩裂缝宽度及渗透率的影响[J].煤田地质与勘察学报,37(1):29~32
[12]PalmerI,MansooriJ.1996.Howpermeabilitydependsonstressandporepressureincoalbeds:anewmodel.AnnualTechnicalConferenceandExhibition.Denver,Colorado.SPE36737.557~564
胡爱梅个人简介相关文章: